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Emerging Technologies for Diagnosing 
Mild Traumatic Brain Injury 

Carey Balaban, Kurt Yankaskas and Alex Kiderman 

AU:1 

AU:2 

s0010 
OVERVIEW AND INTRODUCTION 

AU:4 

p0010 Mild traumatic brain injury (mTBI) has proven to be challenging to document objec- 

tively.1 In the presence of a documented traumatic event (blunt trauma, acceleration decel- 
eration, or blast energy exposure), it is defined primarily by the presence and persistence 
of symptoms that include difficulty thinking clearly, feeling slowed down, difficulty con- 
centrating, difficulty remembering new information, headache, “pressure in the head”, 
neck pain, feeling slowed down or like “in a fog,” difficulty concentrating or remember- 
ing, confusion and/or drowsiness, fuzzy or blurry vision, nausea or vomiting (acutely), 
dizziness, sensitivity to light or noise, balance problems, feeling tired or having no energy, 
irritability, sadness, increased emotional lability, nervousness or anxiety, sleep disruptions 
(too much or too little), and trouble falling asleep. 

p0015     By definition, there was, at worst, only a momentary change in conscious and there are 
no structural imaging findings showing intracranial injury. Emerging technologies, then, 
are needed to document functional deficits that are associated with the status of symptoms 
and objective clinical signs during acute, subacute, and chronic periods after injury. 

p0020        Technologies for objective diagnosis of mTBI face several challenges. A first challenge is 
a clear differentiation between the empiricist approach of “finding markers” and the neu- 
roscientific, precision-medicine goal of differentially diagnosing the biological bases for 
the underlying impairments. Even empirical biomarkers for “dinged and not quite right” 
need to be understood in terms of sites and mechanisms related to the injury and biologi- 
cal attempts to recover. Hence, is also essential that a selective and specific test battery is 
used to help identify the nature of the injury and track the clinical course in subacute and 
chronic post-injury periods in what is likely a very heterogeneous group. Are there spe- 
cific and sensitive findings for injury that are nonlocalizing? Are there specific and sensi- 
tive localizing tests to  refine a diagnosis? Are there specific and  sensitive  findings to 
document resolution of the symptoms and, more importantly, to indicate readiness for 
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2 22. EMERGING TECHNOLOGIES FOR DIAGNOSING MILD TRAUMATIC BRAIN INJURY 

partial, or complete, return to normal activities? One incontrovertible consideration, 
though, is that evidence of delivery of energy to the head remains a necessary contextual 
criterion for diagnosis of mTBI. 

p0025 A second challenge is to transcend the temptation to limit testing to familiar contempo- 
rary technologies. For example, harmonic sinusoidal oscillation testing of the horizontal 
vestibulo-ocular reflex or an audiogram may be of limited utility as a specific tool for 
mTBI testing. Rather, one must consider developing assessment technologies that can illu- 
minate the sources of symptoms and signs that: (1) appear spontaneously; (2) can resolve 
or transform over time; and (3) can be elicited by dynamic test challenges. 

p0030 A third challenge is to design technologies that provide rapid, selective, and specific 
identification of individual patients as having definitive mTBI. This standard requires a 
test battery to clearly distinguish the affected individuals as outliers from the population 
termed unaffected, normal, or subclinical. Pragmatically, the test will distinguish affected 
from unaffected individuals with a history of energy delivery to the head. This level of 
performance is a persistent “devil in the detail” for emerging technologies; it is a far more 
rigorous standard than simply showing a significant difference between partially overlap- 
ping groups of positive and negative subjects. Adherence to this standard drives the 
technology development process beyond the mechanical empiricism of enumerating simi- 
larities and differences between presentations by markers. Rather, the biologic bases 
behind specific and sensitive become important clues for making scientific sense of the 
clinical status of affected individuals. 

p0035 A fourth challenge is to disentangle the neurosensory consequences of cognition and 
cognitive effects of neurosensory processing deficits. For example, there are strong interac- 
tive comorbidities between balance dysfunction and anxiety,2,3 and interactions between 
vestibular dysfunction and cognitive performance.4 This is manifested more widely in con- 
cussion by potential interactions between comorbid sequelae of balance and other neuro- 
sensory deficits, psychiatric signs and symptoms, personality features, and cognitive signs 
and symptoms. This vexing issue was noted more than a decade ago when Moore et al.5 

called for a concerted effort to move concussion from categorical classification to dimen- 
sional conceptualization. It was reiterated by Hoge et al.6 in reference to veterans with 
mTBI. The prevailing view has been to assess, as independent domains, neurocognitive 
function, self-reported symptoms, and postural (or balance) control.7 

p0040 The tendency to somaticize appears to be associated with a prolonged recovery from a 
concussion (defined by symptom reporting).8,9 Path analysis suggested that somatization 

has an influence postconcussive recovery by influencing symptom expression.8 Common 
sense appears to dictate that controls for propensity to self-report symptoms (and their 
persistence) need to be considered as part of any new assessment tools. 

 
 

 
s0015 

OBJECTIVE DIAGNOSTIC TECHNOLOGIES 

s0020  Neurocognitive Tests and Symptom Inventories 

p0045  The basic instruments for neurocognitive tests and symptom inventories are described 
in detail in a recent report of the IOM and NRC10 and were reviewed comprehensively by 
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OBJECTIVE DIAGNOSTIC TECHNOLOGIES 3 

Arrieux  et  al.11   These  tests7,12,13   include  the  Intermediate  Post-Concussion  Assessment 
® 

and   Cognitive   Test   (ImPACT ),   King-Devick   Test,   Automated   Neuropsychological 
Assessment Metrics (ANAM), Sport Concussion Assessment Tool (currently fifth edition, 

or SCAT5) and new products such as BrainCheck.14 They can be administered automati- 
cally on electronic devices (computer, tablet, or personal digital device). The neurocogni- 
tive or neuropsychological components require baseline testing and typically include 

timed performance assessments inspired by the classic Trail-Making Tests.15,16 The anec- 
dotal reports that athletes who “low ball” their baseline performance reveal an inherent 
problem with operational use of these tests. 

 
 

s0025    Symptom Inventories 

p0050 The Post-Concussion Symptom Scale (PCSS, 25 items)17 and the Sport Concussion 
Assessment Tool (5th edition, 22 items) symptom evaluation scale18 are validated tools in 
common use. They elicit the seven-point Likert scale responses to describe the severity of 
similar lists of symptoms (Table 22.1). The scales are used to generate global symptom 
scores as a proxy for impairment. Because symptom perceptions can be affected by comor- 
bid psychiatric, emotional, and personality features,19,20 it is important to focus on instru- 

ments that can assess somatization8,9  and relevant psychological and psychiatric features, 
® 

such  as  the   Minnesota  Multiphasic  Personality  Inventory -2   and  Beck  Depression 
Inventory.20,21 Other validated instruments are useful to examine the perceived impact of 
specific symptoms on activities and quality of life. For example, the Dizziness Handicap 
Inventory is a validated, 25-item instrument that uses a three-point ordinal scale to express 

the attribution of symptoms and perceived handicaps to dizziness.22-27 Hence, it is not 
surprising that DHI scores (and scores) showed  reasonably strong positive  correlation 
with responses to dizziness and mild cognitive impairment related items on the SCAT 

symptom inventory.28 Other tests of the functional impact of symptoms, such as the 
Headache Impact Test (HIT-6t), are worthy of consideration for gauging impairment and 
improvement. A more general approach is represented by the recent efforts of the Patient- 
Reported Outcomes Information System (PROMIS) to develop a TBI Quality of Life (TBI- 

QOL) set of item banks focused on more severe forms of TBI.29,30 The development of 
quality-of-life items specifically tailored to acute, subacute, and chronic mTBI could be of 
considerable value for monitoring therapeutic outcomes and the assessment of readiness 
to return to normal activities. 

p0055  Identification of symptom clusters and gender differences in symptom expression is 
one direction for a concerted effort to move from categorical classification to dimensional 

conceptualization of concussion, as called for more than a decade ago by Moore et al.5 

Dimensional reduction by principal component or factor analysis of self-reporting symp- 
tom questionnaires are an approach for identifying symptom items associated with similar 
underlying dimensions. Table 22.1 shows published results of reductions from two stud- 

ies, both utilizing groups of normal and acute TBI subjects.28,31 There are some strong sim- 
ilarities between the results, but also differences that may reflect differences in the items 
and the orders of common items on the two instruments. Factor analysis of PCSS 
responses, obtained within 7 days of injury, indicated a four-component solution after 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
AU:5 

 

 
IV. DIAGNOSIS AND TREATMENT 



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), 

reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print.  This proof copy is the copyright property of the publisher and 

is confidential until formal publication. 

Hoffer-1631503   978-0-12-812344-7 00022 

 

 

 
 

 
 

4 22. EMERGING TECHNOLOGIES FOR DIAGNOSING MILD TRAUMATIC BRAIN INJURY 
 

t0010  TABLE 22.1  Symptom Scales and Initial Identification of Symptom Dimensions or Clusters in mTBI 
 

Symptom (Rated Item) PCSS Position and (Cluster) 
From Factor Analysis 

 

SCAT Position and (Cluster) 

From Principal Component Analysis 

Headache 1 (CogMigFatig) 1 (PTHx-M) 

Nausea 2 (CogMigFatig) (Somatic) 

AU:9 

Vomiting 3 (Som) 
4 (Nauseated) 

Balance problems 4 (CogMigFatig)/(Somatic) 7 (Dizzy-MCog) 

Dizziness (spinning or moving sensation) 5 (CogMigFatig)/(Somatic)  5 (Dizzy-MCog) 

Fatigue 7 (CogMigFatig) 15 (PTHx-M) 

Trouble falling asleep 8 (Sleep) 22 (Emotional Lability) 

Drowsiness 11 (CogMigFatig) 17 (PTHx-M) 

Sensitivity to light 12 (CogMigFatig) (Som)) 8 (PTHx-M) 

Sensitivity to noise 13 (CogMigFatig) 9 (PTHx-M) 

Irritability 14 (CogMigFatig)(Affect) 19 (Emotional Lability) 

Sadness 15 (Affect) 20 (Emotional Lability) 

Nervous/anxious 16 (Affect) 21 (Emotional Lability) 

Feeling more emotional than usual 17 (Affect) 18 (Emotional Lability) 

Feeling slowed down 19 (CogMigFatig) 10 (PTHx-M) 

Feeling like “in a fog” 20 (CogMigFatig) 11 (Cervicogenic) 

Difficulty concentrating 21 (CogMigFatig) 13 (Dizzy-MCog) 

Difficulty remembering 22 (CogMigFatig) 14 (Dizzy-MCog) 

Visual problems/blurred vision 23 (CogMigFatig) (Som) 6 (Dizzy MCog) 

Other 24 

Lightheadedness 6 - AU:10 

Sleeping more than usual 9 (CogMigFatig) (Sleep) - 

Sleeping less than usual 10 (Sleep) - 

Numbness or tingling 18 (Som) - 

“Pressure in head” - 2 (PTHx-M) 

Neck pain - 3 (Cervicogenic) 

“Don’t feel right” - 12 (PTHx-M) 

Confusion - 16 (Dizzy-MCog) 
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OBJECTIVE DIAGNOSTIC TECHNOLOGIES 5 
 

mTBI, a cognitive-migraine-fatigue (CogMigFatig) factor, an affective (Affect) factor, a 

somatic (Somatic) factor a sleep-related (Sleep) factor.31 A principal component analysis of 
SCAT questionnaire within 6 days of injury, on the other hand, identified a posttraumatic 
headache/migraine (PTHx-M) cluster, a dizzy with mild cognitive impairment (Dizzy- 

MCog) cluster, an emotional lability cluster, a cervicogenic cluster and nausea.28 Despite 
similar objective findings, female participants with mTBI showed higher scores than their 
male counterparts on the PTHx-M cluster, while males with mTBI reported higher scores 
on the Dizzy-MCog complex. These data motivate a deeper exploration of symptom 
dimensions in acute, subacute and chronic mTBI. 

 

s0030   Resting Brain Network Activity 

p0060     Structural imaging, including tractography,32-34  is expected to yield negative findings 
for mTBI. However, network science and network functional imaging35,36 have been pro- 
posed as promising approaches to measure objective changes in brain activity that under- 
lie the signs and symptoms of mTBI. A first step has been examination of resting network 
activity from fMRI,37 MEG,38,39 and EEG40-42 recordings from patients with mTBI. These 
studies suggest that there may be modifications in activity between the default mode net- 
work (posterior cingulate cortex, inferior parietal cortex, inferolateral temporal cortex, and 
ventral anterior cingulate cortex) and frontal cortex,43 which overlaps with the executive 
network (dorsolateral prefrontal and anterior cingulate cortex). A more recent study indi- 
cates that there are frequency specific differences in regional amplitude coupling in mTBI 
patients as well as augmented slow wave activity.44 However, the correlational evidence 
linking these resting activity measures to the degree of cognitive impairment,43 changes in 

emotional regulation and the persistence of posttraumatic complaints45 is not strong. 

 
s0035  Tests of Sensory Evoked Brain Activity in Specific Networks 

p0065 Stimulus-evoked EEG activity has been used standardly for clinical evaluation of neuro- 
sensory processing. Commonly used diagnostic tests include evaluation of visual and 
auditory evoked potentials, which are conducted in conjunction with perceptual tests (e.g., 
perimetry and audiograms) to provide a more comprehensive clinical picture. Specialized 
visual and auditory sensory evoked potentials studies have shown some promise in docu- 
menting mTBI. 

 
s0040    Auditory Processing 

p0070    Metrics associated with central auditory processing are a very promising emerging area 

for assessment of mTBI. A proportion of Individuals with chronic blast mTBI46 and con- 
cussions from blunt trauma show abnormal results on tests of central auditory processing, 

which includes speech comprehension in noise.46,47 A very interesting study has shown 
alterations in speech-evoked frequency-following responses (also called the auditory brain- 
stem response to complex sounds, or cABR) in children who were tested during the sub- 

acute stage mTBI.48 These findings motivate further development of objective metrics 
associated with processing and interpreting complex auditory information. 
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6 22. EMERGING TECHNOLOGIES FOR DIAGNOSING MILD TRAUMATIC BRAIN INJURY 
 

s0045   Visual Evoked Potentials 

p0075  Chronic mTBI may show P100 latency delays ( . 15%) or amplitude reductions, but nor- 
mal ERPs.49 Luminance affects latency and amplitude differentially in chronic mTBI 
patients versus controls.50 It has also been shown that binasal occlusion and base-in prisms 
induce altered changes in patients with chronic mTBI (1-27 years prior to testing).51 These 
findings motivate further development of objective measures of the effects of mTBI on 
brain activity associated with complex visual information processing. 

 
 

s0050  Quantitative Neurologic, Neurotologic, and Neurophthalmologic Diagnosis 

p0080 The documentation of abnormal versional and vergence eye movements after mTBI has 

been a focus of a considerable research interest for more than a decade.52-61 Technologies 
that incorporate some of these published results are available commercially. Here, the 
focus is on considerations for further test development, including oculomotor tests that 
incorporate cognitive tasks. 

p0085 The temporal resolution, spatial resolution, and processing algorithms for eye tracking 
are essential technical considerations for precise and reproducible eye movement assess- 
ment. For video-oculographic methods, sampling at a rate of at least 500 Hz appears to 

be necessary to assess rapid eye movement timing and trajectories62-64; eye position reso- 
lution and precision should be {1 degree of arc for horizontal, vertical and torsional 
deviations. For slower eye movements, lower sampling rates (e.g., 100 Hz) are adequate. 

p0090 Commercially available, advanced, video-based binocular eye tracking with infrared 
illumination systems currently provide independent, real time measurements for each eye 
at rates up to 250 Hz for horizontal and vertical movements and at rates up to 100 Hz for 
torsional eye movements. Video techniques generally use dark pupil tracking with detec- 
tion algorithms for either the pupil centroid or an assumption of the pupil as an ellipse. 
Advanced eye tracking software uses a symmetric mass center algorithm that is designed 
to provide more accurate measurements when the pupil area is partially occluded. 

p0095 Anti-saccade and predictive saccade tasks are examples of oculomotor tests with an 

embedded task that have proven to be useful in detecting mTBI objectively.52,54,65,66 

Antisaccade task performance can be regarded as a core executive function of response 

inhibition.67 An enhanced prosaccadic error rate in subjects with acute mTBI may suggest 
disruption of inhibitory networks that are critical for suppressing the prosaccade. The 
inhibitory contributions likely involve the frontal cortex, as well as output from substantia 

nigra and pars reticulata to the superior colliculus and thalamus.67 Like other saccades, an 
antisaccade is thought to be programmed in the frontal cortex. The predictive saccade 
task, on the other hand, is related to networks controlling timing of movements guided by 
short-term memory cues, including crus I of the cerebellum, medal prefrontal cortex, pos- 

terior cingulate cortex, posterior insula, and parahippocampal gyrus.68 Because reactive 

saccades differentially engage a network that is related to oculomotor execution,68 reactive 
and predictive saccade performance has differential diagnostic value for objective detec- 
tion of damaged cortical pathways. 

p0100 Anomalous convergence eye movements have been described in TBI patients on the 
basis  of  qualitative  and  semiquantitative  observations  and  quantitative  oculographic 
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OBJECTIVE DIAGNOSTIC TECHNOLOGIES 7 

metrics.55,57,58,61 Demonstrations of convergence  insufficiency  have  typically  focused  on 
the range of effective responses to static endpoints (near and far targets).55,57,58 The results 
of analyses of convergence performance with oculographic methods in a diverse group 
of TBI patients61 suggest that dynamic assessment is a promising line of investigation for 
differential diagnosis. 

p0105 Inspection of the consensual pupillary light reflex is a component of standard neuro- 
logic exams. More recently, commercially available pupillometers can record the time 
course of the pupillary constriction and subsequent dilation (relaxation) objectively. 
Metrics for performance have included the onset latency and dynamic assessments of the 

velocity and magnitude of the response. A recent review69 provides a comprehensive char- 
acterization of the current state-of-the-art. It is suggested that a more parsimonious and 
mechanistically insightful analyses could emerge by estimating parameters of formal mod- 

els of the dynamics of these responses70-75 in mTBI patients and matched control groups. 
p0110 The near response is a coordinated motor program of disconjugate eye movements, 

pupil size changes, and lens accommodation. The near triad movement76 is a coordinated 
execution of convergent eye movements, pupillary constriction (miosis), and increased 
lens curvature to track an approaching object. Divergent eye movement, pupillary dilation, 
and decreased lens curvature occur while tracking a receding object. On-going studies 
suggest that mTBI can be detected through an examination of the coordination of eye and 
pupil movements during a binocular disparity tracking task. 

p0115 Static and dynamic posturography have become standard tools in the assessment of bal- 
ance disorders. Hence, they have been used for assessing postural control disorders in 

mTBI (see, e.g.,77-79). The method has been useful to document objectively acute, subacute, 
and chronic emergent and/or a persistent sign of mTBI is responses to step or sinusoidal 
perturbations of the substrate or visual surround. Notable areas for development are the 

expanded use of measures such as approximate or Shannon entropy80-82 to characterize 

system performance and applying ternary pseudorandom perturbations83 to rapidly 
measure the transfer function for postural control. 

p0120 Gait analysis has also been applied to assess anomalous locomotion after mTBI. Earlier 
studies in patients with moderate TBI (grade II concussion) demonstrated the utility of 
dual task cognitive paradigms for revealing gait disorders,84 which was consistent with 
the emerging picture of the utility of multiple task challenges for gait assessment in other 
neurological disorders.85 Based upon this earlier literature, more recent studies show 
promising results with applying dual task paradigms in patients with mTBI.86,87

 

 
 

s0055  Autonomic Function 

p0125 The exacerbation of symptoms of mTBI by exercise  has  motivated  examination  of 
changes in autonomic motor control after injury. The high frequency relative power of 
heart rate variability was reported to be reduced during physical exertion in patients with 
chronic mTBI.88 In a small sample of athletes, approximate entropy (a measure of com- 
plexity of beat-to-beat variability) was depressed transiently in the acute period after 
mTBI.89 It is of further interest that altered patterns of heart rate variability may be a 
component of (developing) comorbid conditions such as anxiety.90
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8 22. EMERGING TECHNOLOGIES FOR DIAGNOSING MILD TRAUMATIC BRAIN INJURY 

s0060    Olfactory System Function 

p0130 Olfactory dysfunction has been documented for some patients with mTBI after either 

blast-wave exposure91,92 or blunt-trauma exposures.93-95 The olfactory system is, in fact, 
positioned strategically as a sentinel for head injury. The direct exposure of the olfactory 
epithelium and nerves to ambient air within the nasal cavity confers vulnerability to blast 
waves, particulate debris, and aerosols from explosions. Bone transmission of energy from 
impact to the ethmoid bone is another source of potential trauma to the nerves. The olfac- 
tory bulb and nerves also play and important role in glymphatic drainage into the 

lymphatic system.96 The relatively superficial location of the olfactory bulb, tracts, and 
piriform cortex also may confer vulnerability for impact to the skull. 

p0135 Olfactory testing approaches include threshold or suprathreshold Identification tests 
with a standardized set of odorant stimuli (e.g., Sniffin’ Stickst or the Alberta  Smell 

Test).97 Results from limited studies suggested efficacy in detecting acute mTBI,93 and that 
olfactory test results may have some prognostic capability for detection of residual brain 

dysfunction in longer term, follow-up neurological examinations.91 Similarly, it was 
reported that acute olfactory dysfunction may be associated with an elevated likelihood of 
adverse cognitive, neuropsychiatric, and functional outcomes during longer term follow- 

ups.95 The current technologies have the advantage of simplicity, but the test-retest reli- 

ability is lower than for standard oculomotor and vestibular testing.97 Further studies are 
clearly needed to explore the roles of olfactory tests in screening batteries. 

 

s0065    Biochemical Markers 

p0140 Considerable effort has been invested in identifying reliable blood or cerebrospinal bio- 
chemical markers for mTBI from among markers for moderate and severe injury, with no 

definitive outcomes.98-100 To date, the most definitive finding may be that some biomar- 
kers help acutely in detecting the potentially CT-positive individuals among those who 

appear to be mild clinically. For example, Sharma et al.101 reported that blood levels of the 
gelatinase, matrix metalloproteinase-2, C-reactive protein, and creatinine kinase type B can 
help differentiate CT-positive from CT-negative patients from samples drawn at an aver- 
age of 7-10 hours post-injury. Prognostic applications seem to be a promising direction 
for biomarker technology development. 

 
 

s0070 FUTURE DIRECTIONS: TOWARD INTEGRATIVE PRECISION 
MEDICAL DIAGNOSIS 

 

 

p0145 A review of the emerging technologies for detecting and monitoring the course of mTBI 
suggests that we are still at a very rudimentary stage for developing comprehensive, ratio- 
nal approaches that illuminate the underlying neurobiology of the condition. However, 
there are promising indications that a combination of refined symptom inventories, objec- 
tive tests of higher order neurological and cognitive functions, and sentinel biomarker tests 
can be both diagnostic in the short-term for the severity of impairment and prognostic for 
the likelihood of subacute and chronic complications. We can now envision test systems 
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that integrate dual-tasking, virtual/augmented reality and accelerometer technologies for 
more challenging, and ecologically valid clinical testing. The same advanced test systems 
will doubtless see wide usage in the rehabilitation sciences, as well. A major  caveat, 
though, is that the development of these precision technologies will require rigorous atten- 
tion to patient stratification criteria and both temporal and functional milestones that are 
critical to monitoring the clinical course of the individual. 
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